If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-31X-900=0
a = 1; b = -31; c = -900;
Δ = b2-4ac
Δ = -312-4·1·(-900)
Δ = 4561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{4561}}{2*1}=\frac{31-\sqrt{4561}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{4561}}{2*1}=\frac{31+\sqrt{4561}}{2} $
| 5(x-89)+3(x+45)=x+9 | | 5-x=x-7 | | 5x+17=17×3 | | 3x+9=2×+15 | | 10y-(2y+1)=39 | | 3n+3(n+1)=39 | | a+2(-5a+5)=82 | | (2x+1)+(x+-10)=90 | | -k+5(3-8k)=261 | | -5(5+4x)=115 | | 22-3n=64 | | -5(1+5n)=-130 | | 2,4x^2-13,1x+2,2=0 | | -9+8x=-7 | | -70=10+8r | | 7n-5=-82 | | 5=12+b | | 6+4x-3x^2;x=5 | | 5x+2-23=0 | | 7,5x=35,88 | | v-12=8 | | 2(3m-5)=26 | | 7x²+3=2x | | 10y^2+37y+7=0 | | (3+-1x2)(3+-1x2)=0 | | 16-x^2;x=4 | | 4x−(13−3x)+17=39 | | x4+16=0 | | n^2+5n;n=-7 | | -8(2+7n)=-2(n+3)-5n | | 2x^2+1/x-1;x=3 | | 2,4x^2+13,1X=-2,2 |